齿轮啸叫噪声的建模方法

中科白癜风医院荣获安全管理优秀奖 https://disease.39.net/bjzkbdfyy/241012/g6tw9jy.html

齿轮啸叫噪声的建模方法

AlexandreCarbonelli1,PascalBouvet,J1.Perret-Liaudet,EmmanuelRigaud,C.JacquesVialonga3

1VIBRATEC

EcoleCentraledeLyon

3RenaultSA

齿轮啸叫噪声建模和仿真计算方法直接影响噪声结果的可靠性。法国Vibratech集团与懿朵联合开发的Vibragear软件通过仿真与测试结果对标,能够准确高效预测齿轮啸叫噪声,为解决啸叫问题提供可靠工具。

摘要

齿轮啮合过程产生的力经常被认为是齿轮箱的主要激励来源。这个过程所产生的动态啮合力通过轮体、轴和轴承传递到齿轮箱上。齿轮箱的振动则会直接引起齿轮箱的啸叫声。通常假设齿轮的静态传递误差和齿轮啮合刚度的波动是齿轮箱辐射噪声的主要来源。这些激励来源于齿轮变形和齿轮微观参数(主动修型和制造误差)。实际中,预测静态传递误差引起的噪声问题仍然是一个难题。

本文提出了一种基本的计算流程,通过使用有限元方法并考虑参数激励以及耦合。整个流程基于频域的模态方法,对于分析很多自由度系统能够提高效率。

第一步,通过齿轮宏观和微观参数计算静态传递误差和齿轮啮合刚度。第二步,利用以上数据计算动态传递误差、齿轮动态载荷和齿轮箱动态响应。此方法中需要建立齿轮箱有限元模型并进行模态分析。

通过专门齿轮箱台架设备进行测试,并对比仿真和试验结果。使用加速度传感器和光学编码器测试静态和动态传递误差以及箱体振动响应。

对每一个步骤都进行了仿真与试验的对比,来验证仿真方法的准确性。

绪论

齿轮箱是汽车上主要的振动噪声来源之一。齿轮箱内部有多种激励源,取决于齿轮箱状态。例如啸叫噪声来源于负载轴系,尤其是反向运行时。激励源是参数激励,并通过轴系和轴承传递到齿轮箱体,见图1所示。然后齿轮箱体振动和噪声直接或间接传递到车内。

图1齿轮箱啸叫噪声的产生和传递

1、齿间激励;2、激励的传递;3、箱体振动

激励可以分为两种现象:传递误差和啮合刚度波动。传递误差主要由于主动(齿轮修型)和非主动(制造误差)的齿轮几何偏差引起。齿轮和轴的变形导致传递误差额外的波动。齿轮之间的接触主要通过啮合刚度(见图2)进行建模。啮合刚度根据接触状态随时间变化(接触齿数、啮合线位置等)

图2齿轮接触等效模型。小齿轮用3D模型或集中惯量建模,齿轮接触用啮合刚度建模

传递误差计算

对于齿轮系统,负载下的STE是主要噪声来源之一。STE是在低转速和给定施加扭矩下被动齿轮实际位置和理论位置之差。其特性取决于啮合齿轮对的瞬时状态。STE来源于齿轮变形、齿面修型以及制造误差。STE的计算方法相对比较经典。对于主动齿轮每个位置θ,通过啮合运动学分析可以计算出啮合面内相配齿面理论啮合线。下面方程组描述了齿轮静态弹性变形。

计算中需要以下数据:

初始齿轮间隙:几何缺陷和齿轮微观修型的函数;

齿轮柔度矩阵C:通过计算有限元模型静态弹性变形,并进行插值得到;

赫兹变形hertz:根据赫兹理论计算得到。

实际计算中需要考虑到每个齿轮位置θ啮合线上不相邻的齿轮,并能够得到时变的STE和齿变形。其中STE是施加扭矩(或施加载荷P)的函数。

啮合刚度k(t)与施加扭矩T=P*Rb和静态传递误差δ(t)有关,并通过以下公式计算:

其中Rb代表被动齿轮基圆,e(t)代表以米为单位的静态传递误差(施加到啮合线上)

完整计算流程见图3所示:

图3完整传递误差计算流程

用于研究的齿轮系统

用于进行研究的齿轮箱如图4所示,其中一部分箱体被移除。齿轮箱由4个齿轮、3根轴和2对啮合组成。每对啮合齿轮的齿数Z如图所示。使用加速度传感器和光学编码器测试静态和动态传递误差以及壳体振动响应。

图4用于研究齿轮箱动态响应的齿轮系统

动态响应计算流程

该计算方法需要完整的齿轮箱有限元模型,来获得其模态信息。齿轮之间的接触用连接每对啮合齿轮自由度的刚度矩阵来建模。为了实现这一目的,我们采用啮合刚度的平均值,以获得平均模态信息。该方法使用强大的频率分辨率算法,以迭代求解动力学方程[5-6]。并对频谱迭代法进行扩展,以便将优化参数考虑在内。在本案例中,由于刚度的波动造成激励之间存在耦合。我们得到啮合动力学方程如下:

K,C,M分别代表系统的刚度矩阵,阻尼矩阵和质量矩阵;

{X}表示系统的广义坐标系,(’)代表时间导数;

Rj是两个啮合齿轮的自由度的宏观几何耦合矢量;

Kj是第j阶啮合刚度;

最终可以得到频域下的动态传递误差(DTE)、齿轮动态载荷和箱体振动。运行速度直接影响共振峰幅值和振动响应幅值,这两个量直接影响齿轮箱的严重程度。对不同施加扭矩可以重复以上流程。计算流程的第一部分,即STE计算,可以用来优化齿轮参数以最小化激励。动态计算可用于优化变速箱其他部件(比如箱体的几何形状,轴承刚度)。所有计算流程如图5所示。

图5计算过程示意

计算流程的验证

本文计算方法在典型的汽车变速箱上得到了广泛而复杂的测试验证,如图6所示。

测试时,使用了加速度传感器、麦克风和光学编码器对静态传动误差波动,动态传动误差,齿轮箱振动和啸叫噪声进行了测试。在本文中,我们主要


转载请注明:http://www.aierlanlan.com/cyrz/7941.html

  • 上一篇文章:
  •   
  • 下一篇文章: 没有了